Hilbert Functions of Graded Algebras

نویسنده

  • RICHARD P. STANLEY
چکیده

Let R be a Noetherian commutative ring with identity, graded by the nonnegative integers N. Thus the additive group of R has a direct-sum decomposition R = R, + R, + ..., where RiRi C R,+j and 1 E R, . I f in addition R, is a field K, so that R is a k-algebra, we will say that R is a G-akebra. The assumption that R is Noetherian implies that a G-algebra is finitely generated (as an algebra over k) and that each R, is a finite-dimensional vector space over k. The Hilbe-rt function of R is defined by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sets of Hilbert Series and Their Applications

We consider graded finitely presented algebras and modules over a field. Under some restrictions, the set of Hilbert series of such algebras (or modules) becomes finite. Claims of that types imply rationality of Hilbert and Poincare series of some algebras and modules, including periodicity of Hilbert functions of common (e.g., Noetherian) modules and algebras of linear growth.

متن کامل

Hilbert Functions of Veronese Algebras

We study the Hilbert polynomials of non-standard graded algebras R, that are finitely generated on generators not all of degree one. Given an expression P (R, t) = a(t)/(1 − t) for the Poincaré series of R as a rational function, we study for 0 ≤ i ≤ l the graded subspaces ⊕kRkl+i (which we denote R[l; i]) of R, in particular their Poincaré series and Hilbert functions. For example, we prove th...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

On a Factorization of Graded Hopf Algebras Using Lyndon Words

We find a generalization of the restricted PBW basis for pointed Hopf algebras over abelian groups constructed by Kharchenko. We obtain a factorization of the Hilbert series for a wide class of graded Hopf algebras. These factors are parametrized by Lyndon words, and they are the Hilbert series of certain graded Hopf algebras.

متن کامل

Reducible family of height three level algebras

Let R = k[x1, . . . , xr] be the polynomial ring in r variables over an infinite field k, and let M be the maximal ideal of R. Here a level algebra will be a graded Artinian quotient A of R having socle Soc(A) = 0 : M in a single degree j. The Hilbert function H(A) = (h0, h1, . . . , hj) gives the dimension hi = dimk Ai of each degree-i graded piece of A for 0 ≤ i ≤ j. The embedding dimension o...

متن کامل

Components of the Space Parametrizing Graded Gorenstein Artin Algebras with a given Hilbert Function

We give geometric constructions of families of graded Gorenstein Artin algebras, some of which span a component of the space Gor(T ) parametrizing Gorenstein Artin algebras with a given Hilbert function T . This gives a lot of examples where Gor(T ) is reducible. We also show that the Hilbert function of a codimension four Gorenstein Artin algebra can have an arbitrarily long constant part with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003